
Loading Multiple Versions of an ASDF System in the Same Lisp Image

Vsevolod Domkin

vseloved@gmail.com

Abstract
In this paper, we present a proof-of-concept solution
that implements consecutive loading of several
versions of the same ASDF system in a single Lisp
image. It uses package renaming to dynamically
adjust the names of the packages loaded by a
particular version of a system to avoid name
conflicts on the package level. The paper describes
the implementation, possible usage, and limitations
of this approach. We also discuss the deficiencies of
ASDF that impede its use as a basis for developing
such alternative system manipulation strategies and
potential ways to address them.

CCS Concepts: • Software and its
engineering~Software configuration management
and version control systems • Software and its
engineering~Software libraries and repositories
• Software and its engineering~Software evolution

1. Introduction
The problem of supporting simultaneous access to
multiple versions of the same library in the same
software artifact is relevant to the software projects
that rely on many third-party components and/or
have a long development time span. Due to the
separate evolution of third-party libraries, the
situations may arise when they may depend on
different incompatible versions of software that
share the same name. Besides, even the software
project under direct control of the user itself may
necessitate dependency of several versions of the
same library that support different behaviors and
functionality. This problem is often called
dependency hell[1] (and, in different programming
language environments, is known as "DLL hell," "jar
hell" etc.) It manifests either in the inability to build
the target software as a result of name conflicts or in
the unsolicited redefinition of parts or whole
functionality by the conflicting packages, which may
happen silently or vocally, depending on the
particular environment.

In Common Lisp, packages[2] provide namespacing

capabilities to reduce the risk of name conflicts
between symbols. The packages are first-class
globally-accessible dynamic objects. Due to the
existence of a centralized “registry” of known
packages in the running Lisp image, name
conflicts may arise when two independent
software artifacts that include the definitions of
the packages with the same names or nicknames
are loaded into the same image. The conflict will
manifest in the redefinition of the previously
loaded package by the one loaded later, which
will result in an extension of the package's
external API and, possibly, an unexpected
redefinition of parts of its functionality that have
the same names (be it functions, classes or
variables). This risk grows with the development
of the library ecosystem, and such cases have
been already reported[3] for the Quicklisp[4]
distribution, which is the largest repository of
Common Lisp open source libraries. An even
higher risk of conflict exists not between
independent pieces of software, but between
different versions of the same software. In this
case, a redefinition of the previous version of the
package with a newer one may be intended (in
case of upgrade), but if non-backward
compatible changes are introduced, this will,
potentially, mandate the upgrade of all of the
package's dependents. Such situation may be
undesired, especially in the case of third-party
dependents that are not under the control of the
user. Moreover, it may be beneficial to utilize
both old and new versions of the upgraded
package's functionality. The described risks are
most critical for production software that is
usually dependent on many external libraries and
is produced via a process of automatic build
(often using Continuous Integration[5] systems),
not allowing for manual intervention in case of
unexpected conflict.
The ways to approach dependency conflicts
include administrative measures (adherence to a
particular versioning or naming policy - see
Semantic Versioning[6] or package renaming on
incompatible changes proposal[7]) and

programmatic solutions. Not questioning the value
of proper software development practices, it should
still be noted that administrative measures have a
crucial limitation of impossibility to fully regulate
the activity of third-party developers, especially for
the software that already exists and may not even be
maintained at the moment. That is why a
programmatic solution is essential, but, currently,
there is no library or feature of an existing tool that
allows dealing with them.

Most programming language environments do not
provide a comprehensive user-friendly way of
automating version conflict resolution due to the
limitations of their namespacing capabilities (see, for
example, the situation in Python[8]). One notable
exception is the JVM, which allows to extend the
standard classlloader[9] to dynamically load several
classes that have the same name — the capability
used by OSGi[10] to systematically handle version
conflicts. Furthermore, the upcoming Java 9 will
include the project Jigsaw[11] that introduces a new
module system also capable of handling version
conflicts by default. JavaScript is another interesting
case as it initially lacked the concept of a package or
module, and when it was later introduced via the
Module pattern[12] and its derivatives, the standard
objects were used to host modules with
incapsulation of dependencies within the object's
private scope that allows to not register the loaded
dependency's name in the global public scope, when
it is not necessary, thus preventing the version
conflict altogether.

In Common Lisp, the low-level solution to conflicts
of package name clashes is the standard rename-
package[13] function. Using it allows possible to
avoid name conflicts by changing the reference to
the first of the conflicting artifacts before the second
one is initialized. If the primarily loaded version of
the package is renamed, a new one may be loaded
without name conflicts. Such renaming, however,
requires careful orchestration as the process of
loading different packages is usually complex and
not fully transparent, and the renaming should take
place after the other packages, which are the users of
the one being renamed, are loaded. This may not be
possible in the general use case because of the
potential redefinition and additions to the packages
at program runtime. However, in the common case
of loading the source code and then working with
the image without any subsequent modifications to
the dependencies, the renaming can be performed
reliably.

Packages are a source code level concept, while
for the purpose of automation of the compilation
and loading of the source code itself, a de facto
standard abstraction provided in Common Lisp
is a “system”[14]. It provides a way to group
relevant source code files and other file-based
resources and to specify the order of their
compilation/loading. The currently adopted
implementation of the system concept and
related APIs is ASDF[15]. ASDF performs the
similar role to make[16] and Ant[17] in other
programming environments, and it allows for
reproducible programmatic bundling,
distribution, and initialization of both software
libraries and applications. The system in ASDF
supports the notion of version, which allows to
logically distinguish different versions of the
same software packages. It also allows
specifying dependencies between systems
(including versioned ones). Putting different
packages (even with the same names) in
different ASDF systems or putting different
versions of the same-named package in different
versions of an ASDF system allows to approach
the problem of name conflicts, provided there is
a way to control the loading of those systems and
perform package renaming at the necessary
points of the process. Currently, ASDF doesn't
implement such functionality. Moreover, it has a
number of key limitations preventing the
implementation. First of all, at any moment in
the running Lisp image, only a single version of
a system may be accessible to ASDF. In case of
an attempt to load another version (that may be
discovered by ASDF even accidentally), several
conflict resolution strategies may be utilized, the
default being to load the system with the latest
sysdef file access timestamp. This constraint is
conditioned on the ASDF reliance on a central
in-memory registry of known systems (similar to
the package registry) that is a key-value store
keyed by system names only, without the version
information. Secondly, the ASDF approach to
version conflict resolution is restricted to a single
pre-defined strategy for determining the
acceptable versions given a certain
constraint[18].

To sum up, there is no end-to-end solution to
potential system-level name and version
conflicts in the Common Lisp environment, but
it is desirable in order to support future growth
of the Lisp library ecosystem and large-scale

projects. The approach should support ASDF
systems. Consequently, the proposed solution is
based on the standard rename-package and low-
level ASDF APIs.

2. Possible conflict scenarios
In order to validate the correctness of a version
conflict resolution approach, the following conflict
scenarios should be analyzed. More complex
possible configurations will be a combination of
these primitive cases.

1. "Zero" scenario. No name conflicts. A
fallback to asdf:load-system is
expected.

2. "Basic" scenario. There is a single name
conflict between prem v.1
(required by foo) and v.2 (required by

bar).

3. "Subroot" scenario. There is a single conflict
(in system foo), and one of the conflicting
packages is a direct dependency of the root
system.

4. "Cross" scenario. There are 2 conflicting
systems at the same level in the
dependency tree: prem and baz.

5. "Inter" scenario. There are 3 conflicting
systems with one of them (quux) being
the dependent on the two others: baz
and prem.

6. "Subinter" scenario. There are 3
conflicting systems with one of them
(foo) being the dependent on the two
others (baz and prem), and one of the
conflicting systems (foo) a direct
dependency of the root system.

3. Implementation
We propose an ASDF-compatible algorithm for
conflict-free loading of a particular system's
dependencies with on-demand renaming of their
packages in case of discovered name/version
conflicts happening at the right moment in the
program loading sequence. The algorithm
comprises of the following steps:

1. Assemble a dependency tree for the
system to be loaded based on ASDF
systems' dependency information and,
using it, discover the dependencies,

which produce name conflicts.
2. In case of no conflicts, fallback to regular

ASDF load sequence.
3. In case of conflicts, for each conflicting

system determine the topmost possible user
of the system in the dependency hierarchy
that doesn't have two conflicting
dependencies (the one, below the lowest
common ancestor of the conflicting
systems).

4. Determine the load order of systems using
topological sort with an additional constraint
that, among the children of the current node
of the dependency tree, the ones that require
conflict resolution will be loaded last.

5. Load the systems' components (plain load
without loading the dependencies) in the
selected order caching the fact of visiting a
particular system to avoid multiple reloading
of the same dependencies that are referenced
from various systems in the dependency
tree.

6. During the load process, record all package

additions and associate them with the
system being loaded.

7. After a particular system has been
loaded, check whether it was determined
as a point of renaming for one or more
of its dependencies, and perform the
renaming.

In step 4, load-last strategy is necessary for the
renaming of the alternative system to happen
before the load of the current one: in case of the
opposite order, the current system will be loaded
but not renamed, as the renaming will happen
only after load of the parent node, which will
result in a name conflict. This is relevant to the
Subroot (4) and Subinter (6) text scenarios.

The algorithm is implemented in the function
load-system-with-renamings[19] that
is summarized in Figure 1. It operates on the
instances of a sys structure that is used as a
simple named tuple: (defstruct sys name
version parent).

(defun load-system-with-renamings (sys)
 (multiple-value-bind (deps reverse-load-order renamings)
 (traverse-dep-tree sys)
 (when (zerop (hash-table-count renamings))
 (return-from load-system-with-renamings (asdf:load-system sys)))
 (let ((already-loaded (make-hash-table :test 'equal))
 (dep-packages (make-hash-table)))
 ;; load dependencies one by one in topological sort order
 ;; renaming packages when necessary and caching the results
 (dolist (dep (reverse reverse-load-order))
 (let ((conflict (detect-conflict)))
 (when (or conflict
 (not (gethash (sys-name dep) already-loaded)))
 (renaming-packages
 (if conflict
 (load-system dep)
 (load-components (asdf:find-system (sys-name dep)))))
 (unless conflict (setf (gethash name already-loaded) t)))))))))
Figure 1. Source code for the load-system-with-renamings procedure

In the actual function, the renaming-
packages and detect-conflict macros are
implemented in-place, but, here, for the sake of
clarity, they are extracted. detect-conflict
is omitted as it is trivial to implement, and
renaming-packages is listed separately (see
Figure 2). That's why it references the
seemingly free (but, in fact, the parent's) dep

and dep-packages variables.

The traverse-dep-tree[19] function
implements the first stage of the algorithm:
building a dependency tree, discovering
conflicts and arranging the dependencies in
proper order for loading. It recurses on the
current system's dependencies and keeps a

set of the encountered systems and their
versions to spot version conflicts via set
intersection with a specialized :key function
that takes into account different system
versions.

We also provide an alternative to the ASDF's
implementation of system loading facility in
load-system and load-components
functions.

(defmacro renaming-packages (&body body)
 `(let ((known-packages (list-all-packages)))
 ,@body
 ;; record newly added packages
 (setf (gethash dep dep-packages)
 (set-difference (list-all-packages) known-packages))
 ;; it's safe to rename pending packages now
 (dolist (d (gethash dep renamings)))
 (let ((suff (format nil "~:@(~A-~A-~A~)"
 (sys-version d) (sys-name dep) (gensym))))
 (dolist (pkg (gethash d dep-packages))
 (rename-package pkg (format nil "~A-~A"
 (package-name package) suff)
 (mapcar (lambda (nickname)
 (format nil "~A-~A" nickname suff))
 (package-nicknames pkg)))))))
Figure 2. Source code for the renaming-packages macro

3. Working around ASDF
The initial assumption for the development of
this algorithm was to build it on top of the
public ASDF API as an alternative system
loading strategy. However, during its
implementation, several obstacles were
encountered in ASDF, which forced us to
develop alternative procedures to the existing
ASDF public counterparts, using the low-level
internal ASDF utilities.

The main blocker was an ASDF's core choice to
have a central registry of known systems that
uses unversioned system names as keys.

In a lot of ways, ASDF is very tightly-coupled
and not transparent:

 The source code, in general, is rather
extensive and abstraction-heavy, but not
well-documented.

 Most of the ASDF actions, even the
ones that could be implemented in a
purely functional manner (for instance,
find-system), trigger internal state
changes.

 The ASDF operations class hierarchy is

based on a number of abstract
classes, such as downward-,
upward- or sideway-
operations, which form implicit
interdependencies between concrete
operations, but this is not
documented in a clear manner.

 The ASDF operations are performed
not directly, but according to an order
specified in a plan[20] object. The
plan API is also not documented.

 ASDF caching behavior is
undocumented.

This makes ASDF a monolithic tool tuned
towards implementing a particular strategy
of handling systems, which is substantially
hard to repurpose in order to support
alternative strategies, using the existing
machinery for system discovery,
orchestration of compilation, and loading of
single files. Consequently, there are many
unexpected omissions from the ASDF public
API. Here are a few that were encountered in
the process of this work:

 There is no direct way to load a
system from a specific filesystem

location: only a system that is previously
found using the ASDF algorithm can be
loaded.

 There is no direct way to enumerate all
potential candidate locations for loading
a system: each ASDF system search
function should terminate the discovery
process as soon as it finds a candidate.

 There is no direct way to find a system
with a specified version: the version
argument to ASDF operations may only
be used as a constraint that the current
candidate system should satisfy, not as a
guide for selecting the candidate.

 There is no direct way to load just the
source files for the system's components
without checking and, possibly,
reloading its dependencies: calling
load-op on a source file invokes
implicit operation planning machinery
that is specified partly in the operations
hierarchy and partly in the associated
generic functions, and it will cause the
call to prepare-op on the same file,
which triggers prepare-op on the
whole system, which, in turn, checks the
system's dependencies and may invoke
their full reload. Overall, a simple call to
(operate 'load-op
<component>) may produce a call
stack of 10 or more levels of just ASDF
operations.

 It is impossible to read the contents of an
ASDF system definition without

changing the global state, although
this is often needed to determine
some property of the candidate ASDF
system, like its version or set of
dependencies.

As a result, we had to define a number of
utility functions to patch the missing parts of
ASDF, which, definitely, are not well-
integrated with the current vision of how
ASDF parts should play together, and which
use a number of private ASDF utilities that
might be changed or removed in the next
versions. Such approach is, obviously, not
scalable and, ideally, the implementation
should be performed based solely on the
ASDF public API. But, to allow that, the API
has to be expanded significantly, which will
require some major changes to ASDF core:
adding deeper support for versions,
decoupling some of the functions, and
making others less dependent on side effects.

Below is an example of some of the
alternatives to ASDF operations that we have
developed. The sysdef-exhaustive-
central-registry-search (see Figure
3) is a version of asdf::sysdef-
central-registry-search that doesn't
stop as soon as the first candidate ASD-file
is found. It is used instead of
asdf:search-for-system-
definition, and has a drawback of
limiting the search to only the legacy
central-registry locations.

(defun sysdef-exhaustive-central-registry-search (system)
 (let ((name (asdf:primary-system-name system))
 rez)
 (dolist (dir asdf:*central-registry*)
 (let ((defaults (eval dir)))
 (when (and defaults (uiop:directory-pathname-p defaults))
 (let ((file (asdf::probe-asd name defaults
 :truename asdf:*resolve-symlinks*)))
 (when file (push file rez))))))
 (reverse rez)))
Figure 3. Source code for the sysdef-exhaustive-central-registry-search function

We, also, had to resort to an interesting way of
getting a record for a specific system by its

ASD-file (see Figure 4) as a part of an
alternative implementation of find-

system. Unfortunately, there is no ASDF
function that will load an ASD file and return a

list of ASDF system objects for the systems
defined in it.

(asdf:load-asd asd)
(cdr (asdf:system-registered-p system))
Figure 4. Source code for the sysdef-exhaustive-central-registry-search function

Finally, in Figure 5 you may find a workaround
to shortcircuit the ASDF operations'
interdependency mechanism and prevent it from
performing any other actions except directly

loading the components of a current system. In
general, it is a sign of excessive code coupling
when a simpler operation requires more code
than a more complex one, which includes it.

(defparameter *loading-with-renamings* nil)
(defmethod asdf:component-depends-on :around ((o asdf:prepare-op)
 (s asdf:system))
 (unless *loading-with-renamings*
 (call-next-method)))
(defun load-components (sys)
 (let ((*loading-with-renamings* t))
 (dolist (c (asdf:module-components sys))
 (asdf:operate 'asdf:load-op c)))
 t)
Figure 5. Source code for the simplified mechanism of ASDF components loading

To sum up, the current version of ASDF is
tightly-coupled and lacks referential
transparency at core, while at the middle level
it's not well-documented and lacks a
comprehensive API that could be used for the
development of alternative top-level system
management utilities based on a solid
foundation of ASDF's system discovery and
individual component manipulation machinery.

4. Limitations of the Solution
The proposed solution is, primarily, intended for
the use case of loading the whole target system
at once without future modifications of its
dependencies in-memory, which is necessitated
by production build environments. The
alternative system load scenarios, that are,
mostly, interactive and allow for the
programmer to remain in control of the
environment, resorting, in case of conflicts, to
manual intervention ranging from explicit
renaming to changing the source code of the
conflicting dependencies and "vendoring" them
as part of the project, are not in such desperate
need of an automatic solution.

Our approach has a number of limitations
that should be listed to avoid unexpected and
unexplainable edge cases. The risk of their
manifestation in the intended environment is
low, but, nevertheless, the users should be
aware of the possible shortcomings.

The first limitation is the passive mechanism
of capturing package changes after-the-fact,
which is not transactional. Parallel
invocation of load-system-with-
renamings has a race condition. The
critical section is the process of recording the
changes to the global package table in
renaming-packages. To remove the
limitation, this part may be protected by a
mutex. This is not done in the presented code
to avoid additional complexity. Ideally, the
sequential and parallel versions of this
procedure should be provided with the
sequential one being the default. An
alternative solution would be to perform full
source code analysis of the system to be
loaded in order to determine, which
packages will be defined in it. Such
complexity is definitely an overkill.

Our approach also relies on the assumption that
all the packages from the currently loaded
systems where not defined previously. It is a
reasonable constraint for the vanilla production
environment, which may, however, be violated
during an interactive session. Unfortunately, the
only measure that may be taken here is a
disciplined approach to package loading. At
least, the Lisp compiler will issue a warning on
package redefinition, which will alert the
programmer that the name conflict has occurred.
It is possible to expand the loading function to
intercept this warning and terminate its
operation, if necessary.

Elaborating on this point, it should be also
obvious that this procedure will not be able to
catch changes to existing packages (that may be
regarded as monkey-patching, in this context). It
is debatable, whether such changes should be
prevented by our system, as their purpose is
usually contradictory to the idea of immutable
dependencies that our solution upholds.

Next potential issue is associated with implicit
transitive dependencies: if a system foo depends
on bar and quux, and bar also depends on quux,
in ASDF system definition, it is sufficient to list
only bar as foo's direct dependency. This
implicit dependency may break if quux's
packages are renamed during the loading
process: according to the algorithm, the
renaming will happen directly after loading of
bar. In such situation, all the references to
quux's packages in foo's code will be
invalidated, as they will be read when the
packages will not be accessible by the old
canonical names. However, such situation is
relevant only to the newly defined systems that
are under full control of the developer, as for the
deeper dependencies there should be no version
conflicts, as they would not have allowed the
system to be built by the normal ASDF
procedure, and conflicts introduced when
combining multiple dependencies are resolved
at the topmost level by the algorithm, thus not
effecting the dependency subtrees of the
combined systems. Adding an explicit

dependency on quux in foo allows solving
the problem in a straightforward way.

Also, our approach doesn't address the
possibility of two independent packages
having the same name and version, but it,
probably, should be handled not at the code-
base level, but rather the social one.
Additionally, our conflict-finding mechanism
may be extended to catch such case.

Finally, the additional minor inconvenience
is that the conflicting packages will be
available under altered names, which can be
discovered from the environment but are not
apparent. This may impede interactive
redefinition, monkey-patching, hot-patching
and other interactive programming practices
that might occasionally be of interest to the
user. It will surely break the code relying on
runtime manipulations using intern or
eval: the references to the renamed
packages in the code not yet evaled will be
invalidated after the renaming, unlike the
references in the code that was read and
loaded, which will be associated with new
names automatically.

5. Conclusions and Future Work
Our name conflict resolution algorithm and
its proof-of-concept implementation provide
a feasible solution to potential dependency
hell problems for Common Lisp software,
specifically targeted to production
environments. The paper also explores its
corner cases, which require special handling.
Although this solution may not be final, it is
already usable in the environments that are
faced with dependency conflicts.

The proposed approach has several
directions of improvement:

 It should be expanded to cover other
non-load-based scenarios of system
manipulation. In particular, for the
compilation use case, the
implementation should be almost
identical.

 It should be made more compatible

with ASDF (provided ASDF is also
changed to be less hostile to such
solutions).

Exploration of the possible implementation
strategies for this program also helped uncover
the deficiencies in the current implementation of
ASDF and showed one of the directions for its
future development. ASDF is underutilizing its
position as a de facto standard toolkit for
dependency management in Common Lisp by
not providing a comprehensive API for
manipulation of both systems and system
definition files. In order to allow for this
algorithm and other possible non-default build
strategies to be implemented on top of ASDF
public API, a number of changes are necessary.
In general, those should include decoupling of
the ASDF code base (specifically from the
assumptions of a 1-to-1 mapping of a system
record in the ASDF registry to a system
currently loaded), comprehensive
documentation of the plan and action APIs,
development of utility wrapper functions for
common middle-level actions, and a general
review of the public API according to the
scenarios we'd like it to support.

References
[1] “Dependency Hell” definition -
https://en.wikipedia.org/wiki/Dependency_hell
[2] Pitman, K. M., Common Lisp HyperSpec, 1996.
Chapter 11. Packages -
http://www.lispworks.com/documentation/lw50/CL
HS/Body/11_.htm
[3] Nickname collision: bordeaux-threads and
binary-types -
https://github.com/quicklisp/quicklisp-
projects/issues/296
[4] Beane, Z., Quicklisp - http://quicklisp.org
[5] “Continuous Integration” definition -
https://en.wikipedia.org/wiki/Continuous_integration
[6] Semantic Versioning - http://semver.org/
[7] Vodonosov, A., Backward compatibility of
libraries (case study in Common Lisp) -
https://www.european-lisp-
symposium.org/editions/2016/lightning-talks-1.pdf
[8] Kernfeld, P., The Nine Circles of Python
Dependency Hell -
https://tech.knewton.com/blog/2015/09/the-nine-
circles-of-python-dependency-hell/

[9] Liang, S., Bracha, G., Dynamic class loading
in the Java virtual machine - Proceedings of the
13th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications, OOPSLA ’98, pages 36–44, 1998 -
http://www.humbertocervantes.net/coursdea/Dyn
amicClassLoadingInTheJavaVirtualMachine.pdf
[10] OSGi service platform core specification -
http://www.osgi.org/
[11] Project Jigsaw. Project Jigsaw website -
http://openjdk.java.net/projects/jigsaw/
[12] Herman, D., Tobin-Hochstadt, S., Modules
for JavaScript Simple, Compilable, and Dynamic
Libraries on the Web -
homes.soic.indiana.edu/samth/js-modules.pdf
[13] Pitman, K. M., Common Lisp HyperSpec,
1996. Function RENAME-PACKAGE -
http://www.lispworks.com/documentation/Hyper
Spec/Body/f_rn_pkg.htm
[14] ASDF System -
http://www.cliki.net/ASDF+System
[15] ASDF - https://common-
lisp.net/project/asdf/
[16] make. Gnu make website -
https://www.gnu.org/software/make/
[17] ant. Apache ant website -
http://ant.apache.org/
[18] Rideau, F.-R., Goldman, R.P., ASDF
Manual. Chapter 7.4 Functions, Function:
version-satisfies - https://common-
lisp.net/project/asdf/asdf/Functions.html
[19] Domkin, V., ASDFx -
https://github.com/vseloved/asdfx/blob/master/as
dfx.lisp
[20] Rideau, F.-R., Goldman, R.P., ASDF
Manual. Chapter 7. The Object model of
ASDF - https://common-
lisp.net/project/asdf/asdf/The-object-model-of-
ASDF.html

	Loading Multiple Versions of an ASDF System in the Same Lisp Image

